Groups with finitely many conjugacy classes and their automorphisms

Ashot Minasyan^a

Université de Genève

^aSupported by the Swiss National Science Foundation (No. PP002-68627).

Groups with (nCC)-I

Groups with $(n \, \text{CC})$ – II

Natural Questions
Torsion-free groups with $(n \, \text{CC})$ Other kinds of embeddings
Outer automorphisms of $(2 \, \text{CC})$ -groups

Open Problems

Let G be a gp. and $x, y \in G$. Notation:

$$x \stackrel{G}{\sim} y \Longleftrightarrow \exists \ a \in G \text{ s.t. } y = axa^{-1}$$

Groups with (nCC)-I

Groups with (nCC) – II

Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

Let G be a gp. and $x, y \in G$. Notation:

$$x \stackrel{G}{\sim} y \Longleftrightarrow \exists \ a \in G \text{ s.t. } y = axa^{-1}$$

$$\pi(G) = \{ m \in \mathbb{N} \mid \exists g \in G \text{ s.t. } order(g) = m \}.$$

Groups with (nCC) - I

Groups with (nCC) – II

Natural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Let G be a gp. and $x, y \in G$. Notation:

$$x \stackrel{G}{\sim} y \Longleftrightarrow \exists \ a \in G \text{ s.t. } y = axa^{-1}$$

$$\pi(G) = \{ m \in \mathbb{N} \mid \exists g \in G \text{ s.t. } order(g) = m \}.$$

Thm. (Higman-Neumann-Neumann). Any countable gp. C can be embedded into a countable group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

Groups with (nCC) - I

Groups with (nCC) – II

Natural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Let G be a gp. and $x, y \in G$. Notation:

$$x \stackrel{G}{\sim} y \Longleftrightarrow \exists \ a \in G \text{ s.t. } y = axa^{-1}$$

$$\pi(G) = \{ m \in \mathbb{N} \mid \exists g \in G \text{ s.t. } order(g) = m \}.$$

Thm. (Higman-Neumann-Neumann). Any countable gp. C can be embedded into a countable group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

For a given $n \in \mathbb{N}$, a gp. G is said to satisfy (nCC) if it has exactly n conjugacy classes of elements.

Groups with (nCC) - I

Groups with $(n \, \text{CC}) - \text{II}$ Natural Questions
Torsion-free groups with $(n \, \text{CC})$ Other kinds of embeddings
Outer automorphisms of $(2 \, \text{CC})$ -groups
Open Problems

Let G be a gp. and $x, y \in G$. Notation:

$$x \stackrel{G}{\sim} y \Longleftrightarrow \exists \ a \in G \text{ s.t. } y = axa^{-1}$$

$$\pi(G) = \{ m \in \mathbb{N} \mid \exists g \in G \text{ s.t. } order(g) = m \}.$$

Thm. (Higman-Neumann-Neumann). Any countable gp. C can be embedded into a countable group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

For a given $n \in \mathbb{N}$, a gp. G is said to satisfy (nCC) if it has exactly n conjugacy classes of elements.

Applying the above theorem to the case $C = \mathbb{Z}_{2^{n-2}}$ one gets

Groups with (nCC) - I

Groups with (nCC) – II

Natural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Let G be a gp. and $x, y \in G$. Notation:

$$x \stackrel{G}{\sim} y \Longleftrightarrow \exists \ a \in G \text{ s.t. } y = axa^{-1}$$

$$\pi(G) = \{ m \in \mathbb{N} \mid \exists g \in G \text{ s.t. } order(g) = m \}.$$

Thm. (Higman-Neumann-Neumann). Any countable gp. C can be embedded into a countable group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

For a given $n \in \mathbb{N}$, a gp. G is said to satisfy (nCC) if it has exactly n conjugacy classes of elements.

Applying the above theorem to the case $C = \mathbb{Z}_{2^{n-2}}$ one gets

Cor. For every $n \in \mathbb{N}$, $n \geq 2$, there exists an infinite countable (nCC)-group G.

Groups with (n CC) - I

Groups with (n CC) - II

Natural Questions
Torsion-free groups with $(n{\tt CC})$ Other kinds of embeddings
Outer automorphisms of $(2{\tt CC})$ -groups
Open Problems

Thm. (Ivanov). For every prime $p \gg 1$ there exists an infinite 2-generated gp. G of exponent p satisfying (pCC).

Groups with (n CC) - I

Groups with (n CC) – II

Natural Questions
Torsion-free groups with $(n{\rm CC})$ Other kinds of embeddings
Outer automorphisms of $(2{\rm CC})$ -groups
Open Problems

Thm. (Ivanov). For every prime $p \gg 1$ there exists an infinite 2-generated gp. G of exponent p satisfying (pCC).

Thm. (Osin). Any countable group C can be embedded into a 2-generated group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

Groups with (n CC) – I

Groups with $(n \, {\rm CC})$ – ${\rm II}$

Natural Questions
Torsion-free groups with (n CC)Other kinds of embeddings
Outer automorphisms of (2 CC)-groups
Open Problems

Thm. (Ivanov). For every prime $p \gg 1$ there exists an infinite 2-generated gp. G of exponent p satisfying (pCC).

Thm. (Osin). Any countable group C can be embedded into a 2-generated group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

Cor. (Osin). For every $n \in \mathbb{N}$, $n \geq 2$, there exists an infinite 2-generated (nCC)-group G.

Groups with $(n \, {\rm CC})$ – I

Groups with (nCC) – II

Natural Questions
Torsion-free groups with (n CC)Other kinds of embeddings
Outer automorphisms of (2 CC)-groups
Open Problems

Thm. (Ivanov). For every prime $p \gg 1$ there exists an infinite 2-generated gp. G of exponent p satisfying (pCC).

Thm. (Osin). Any countable group C can be embedded into a 2-generated group G s.t. $\pi(G) = \pi(C)$ and $\forall x, y \in G$ if order(x) = order(y) then $x \stackrel{G}{\sim} y$.

Cor. (Osin). For every $n \in \mathbb{N}$, $n \geq 2$, there exists an infinite 2-generated (nCC)-group G.

Remark. If $n \ge 3$ then the examples produced by the above cor. always contain torsion.

Groups with (n CC) – I Groups with (n CC) – II

Natural Questions

Torsion-free groups with (nCC) Other kinds of embeddings Outer automorphisms of (2CC)-groups Open Problems

Question 1. For $n \ge 3$, can one construct a f.g. torsion-free gp. with (nCC)?

Groups with (nCC) – I Groups with (nCC) – II

Natural Questions

(2CC)-groups

Open Problems

Torsion-free groups with $(n {\tt CC})$ Other kinds of embeddings Outer automorphisms of

Question 1. For $n \ge 3$, can one construct a f.g. torsion-free gp. with (nCC)?

Immediate "Yes" when $n = 2^k$: if $H \models (2CC)$ then $G = H^k = H \times \cdots \times H \models (nCC)$.

Groups with (nCC) – I Groups with (nCC) – II

Natural Questions

Open Problems

Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups

Question 1. For $n \ge 3$, can one construct a f.g. torsion-free gp. with (nCC)?

Immediate "Yes" when $n = 2^k$: if $H \models (2CC)$ then $G = H^k = H \times \cdots \times H \models (nCC)$.

Question 2. Can any countable torsion-free group C, with $x,y\in C\setminus\{1\}$ and $x\stackrel{C}{\nsim}y$, be embedded into a t.-f. gp. G with (3CC) s.t. $x\stackrel{G}{\nsim}y$?

Groups with (nCC) – I Groups with (nCC) – II

Natural Questions

Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Question 1. For $n \ge 3$, can one construct a f.g. torsion-free gp. with (nCC)?

Immediate "Yes" when
$$n = 2^k$$
: if $H \models (2CC)$ then $G = H^k = H \times \cdots \times H \models (nCC)$.

Question 2. Can any countable torsion-free group C, with $x,y\in C\setminus\{1\}$ and $x\stackrel{C}{\nsim}y$, be embedded into a t.-f. gp. G with (3CC) s.t. $x\stackrel{G}{\nsim}y$?

The answer to Q.2 is "No": set

$$C = \langle a, b \parallel bab^{-1} = a^{-1} \rangle \cong \mathbb{Z} \rtimes \mathbb{Z}.$$

Then $b \stackrel{C}{\approx} b^{-1}$ but if $C \hookrightarrow G$ and $G \vDash (3CC)$ then $b \stackrel{G}{\sim} b^{-1}$.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

<u>Def.</u> Suppose $x, y \in G$, then x is commensurable with y ($x \stackrel{G}{\approx} y$) if $\exists k, l \neq 0$ s.t. $x^k \stackrel{G}{\sim} y^l$.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

<u>Def.</u> Suppose $x, y \in G$, then x is commensurable with y ($x \stackrel{G}{\approx} y$) if $\exists k, l \neq 0$ s.t. $x^k \stackrel{G}{\sim} y^l$.

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t.-f. gp. G s.t.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

<u>Def.</u> Suppose $x, y \in G$, then x is commensurable with y ($x \stackrel{G}{\approx} y$) if $\exists k, l \neq 0$ s.t. $x^k \stackrel{G}{\sim} y^l$.

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t.-f. gp. G s.t.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

<u>Def.</u> Suppose $x, y \in G$, then x is commensurable with y ($x \stackrel{G}{\approx} y$) if $\exists k, l \neq 0$ s.t. $x^k \stackrel{G}{\sim} y^l$.

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t.-f. gp. G s.t.

- (i) G is 2-generated;
- (ii) G has (nCC);

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

<u>Def.</u> Suppose $x, y \in G$, then x is commensurable with y ($x \stackrel{G}{\approx} y$) if $\exists k, l \neq 0$ s.t. $x^k \stackrel{G}{\sim} y^l$.

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t-f. gp. G s.t.

- (i) G is 2-generated;
- (ii) G has (nCC);

(iii) $x_i \not\approx x_j$ if $i \neq j$, thus $G = [1] \sqcup [x_1] \sqcup \cdots \sqcup [x_{n-1}]$;

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

<u>Def.</u> Suppose $x, y \in G$, then x is commensurable with y ($x \stackrel{G}{\approx} y$) if $\exists k, l \neq 0$ s.t. $x^k \stackrel{G}{\sim} y^l$.

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t-f. gp. G s.t.

- (i) G is 2-generated;
- (ii) G has (nCC);

(iii)
$$x_i \not\approx x_j$$
 if $i \neq j$, thus $G = [1] \sqcup [x_1] \sqcup \cdots \sqcup [x_{n-1}]$;

(iv) G is 2-boundedly simple, i.e., $\forall \ x,y \in G \setminus \{1\} \quad \exists \ a,b \in G$: $y = axa^{-1}bxb^{-1}$.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t.-f. gp. G s.t.

- (i) G is 2-generated;
- (ii) G has (nCC);

(iii)
$$x_i \not\approx x_j$$
 if $i \neq j$, thus $G = [1] \sqcup [x_1] \sqcup \cdots \sqcup [x_{n-1}]$;

(iv) G is 2-boundedly simple, i.e., $\forall \ x,y \in G \setminus \{1\} \quad \exists \ a,b \in G$: $y = axa^{-1}bxb^{-1}$.

Setting $C = F(x_1, \dots, x_{n-1})$ we achieve

Cor. For every $n \in \mathbb{N}$, $n \geq 2$, there exists a torsion-free 2-generated (nCC)-group G.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t-f. gp. G s.t.

- (i) G is 2-generated;
- (ii) G has (nCC);

(iii)
$$x_i \not\approx x_j$$
 if $i \neq j$, thus $G = [1] \sqcup [x_1] \sqcup \cdots \sqcup [x_{n-1}]$;

(iv) G is 2-boundedly simple, i.e., $\forall \ x,y \in G \setminus \{1\} \quad \exists \ a,b \in G$: $y = axa^{-1}bxb^{-1}$.

Taking $C = H * F(x_1, ..., x_{n-1})$ where H is an arbitrary t.-f. gp. one can show:

Cor. For every $n \in \mathbb{N}$, $n \geq 2$, there exists 2^{\aleph_0} of non-isomorphic torsion-free 2-generated 2-boundedly simple (nCC)-groups.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

Thm. (M.) Let C be a countable torsion-free group, $n \in \mathbb{N}$, $n \geq 2$, and $x_1, \ldots, x_{n-1} \in C \setminus \{1\}$ satisfy $x_i \not\approx x_j$ if $i \neq j$. Then C can be embedded into a t.-f. gp. G s.t.

- (i) G is 2-generated;
- (ii) G has (nCC);
- (iii) $x_i \not\approx x_j$ if $i \neq j$, thus $G = [1] \sqcup [x_1] \sqcup \cdots \sqcup [x_{n-1}]$;
- (iv) G is 2-boundedly simple, i.e., $\forall \ x,y \in G \setminus \{1\} \quad \exists \ a,b \in G$: $y = axa^{-1}bxb^{-1}$.

Idea of the proof. First take a sequence of HNN-extensions to embed C into a countable t.-f. gp. \tilde{G} that satisfies (ii)-(iv). Then apply small canc. theory over rel. hyp. gps. to embed \tilde{G} into G enjoying (i)-(iv).

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings

Outer automorphisms of (2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings

Outer automorphisms of (2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t--f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t--f. gp. Q, possessing $N \lhd Q$, s.t.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings

Outer automorphisms of (2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t--f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t--f. gp. Q, possessing $N \lhd Q$, s.t.

1. $Q=H\cdot N$ and $H\cap N=M$ (hence $Q/N\cong H/M$);

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t.-f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t.-f. gp. Q, possessing $N \lhd Q$, s.t.

- 1. $Q = H \cdot N$ and $H \cap N = M$ (hence $Q/N \cong H/M$);
- 2. $\forall x, y \in Q \setminus \{1\}$, $x \stackrel{Q}{\sim} y \iff \varphi(x) \stackrel{Q/N}{\sim} \varphi(y)$, where $\varphi: Q \to Q/N$ is the natural hom-m;

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings

Outer automorphisms of (2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t-f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t-f. gp. Q, possessing $N \lhd Q$, s.t.

- 1. $Q = H \cdot N$ and $H \cap N = M$ (hence $Q/N \cong H/M$);
- 2. $\forall x, y \in Q \setminus \{1\}, \ x \stackrel{Q}{\sim} y \iff \varphi(x) \stackrel{Q/N}{\sim} \varphi(y),$ where $\varphi: Q \to Q/N$ is the natural hom-m;
- 3. N has (2CC); if H/M has (n-1) c.c. then Q has (nCC);

Groups with (n CC) - IGroups with (n CC) - IINatural Questions Torsion-free groups with (n CC)

Other kinds of embeddings
Outer automorphisms of

(2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t.-f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t.-f. gp. Q, possessing $N \lhd Q$, s.t.

- 1. $Q = H \cdot N$ and $H \cap N = M$ (hence $Q/N \cong H/M$);
- 2. $\forall x, y \in Q \setminus \{1\}, \ x \stackrel{Q}{\sim} y \iff \varphi(x) \stackrel{Q/N}{\sim} \varphi(y),$ where $\varphi: Q \to Q/N$ is the natural hom-m;
- 3. N has (2CC); if H/M has (n-1) c.c. then Q has (nCC);
- 4. rank(N) = 2 and $rank(Q) \leq rank(H/M) + 2$.

Groups with (nCC)-IGroups with (nCC)-IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t.-f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t.-f. gp. Q, possessing $N \lhd Q$, s.t.

- 1. $Q = H \cdot N$ and $H \cap N = M$ (hence $Q/N \cong H/M$);
- 2. $\forall x, y \in Q \setminus \{1\}$, $x \stackrel{Q}{\sim} y \iff \varphi(x) \stackrel{Q/N}{\sim} \varphi(y)$, where $\varphi: Q \to Q/N$ is the natural hom-m;
- 3. N has (2CC); if H/M has (n-1) c.c. then Q has (nCC);
- 4. rank(N) = 2 and $rank(Q) \leq rank(H/M) + 2$.

Cor. The Klein bottle group $H=\langle a,b \mid bab^{-1}=a^{-1}\rangle$ can be embedded into a f.g. t.-f. (4CC)-gp. Q s.t. $b \stackrel{Q}{\sim} b^{-1}$.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions Torsion-free groups with (nCC)

Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

If G is a gp, then rank(G) is the minimal no. of elements required to generate G.

Thm. (M.) Let H be a t.-f. countable gp. and let $\{1\} \neq M \lhd H$. Then H can be embedded into a t.-f. gp. Q, possessing $N \lhd Q$, s.t.

- 1. $Q = H \cdot N$ and $H \cap N = M$ (hence $Q/N \cong H/M$);
- 2. $\forall x, y \in Q \setminus \{1\}, \ x \stackrel{Q}{\sim} y \iff \varphi(x) \stackrel{Q/N}{\sim} \varphi(y),$ where $\varphi: Q \to Q/N$ is the natural hom-m;
- 3. N has (2CC); if H/M has (n-1) c.c. then Q has (nCC);
- 4. rank(N) = 2 and $rank(Q) \leq rank(H/M) + 2$.

Cor. The Klein bottle group $H=\langle a,b \mid bab^{-1}=a^{-1}\rangle$ can be embedded into a f.g. t.-f. (4CC)-gp. Q s.t. $b \not\approx b^{-1}$.

(Choose $M = \langle a, b^3 \rangle \triangleleft H$, $H/M \cong \mathbb{Z}_3$.)

Groups with (nCC) - IGroups with (nCC) - IINatural Questions
Torsion-free groups with (nCC)Other kinds of embeddings

Outer automorphisms of

(2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Groups with (nCC)-IGroups with (nCC)-IINatural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups

Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

■ Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.

Groups with (nCC) - IGroups with (nCC) - IINatural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.

Groups with (nCC) – I
Groups with (nCC) – II
Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.
- Bumagina-Wise: \forall countable gp. C, \exists N s.t. $C \cong Out(N)$ and N is f.g.

Groups with (nCC) – I
Groups with (nCC) – II
Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.
- Bumagina-Wise: \forall countable gp. C, \exists N s.t. $C \cong Out(N)$ and N is f.g.

Thm. (M.) Let C be an arbitrary countable gp. Then for every non-elem. t.-f. word hyp. gp. G there exists a t.-f. gp. N s.t.

Groups with (nCC) – I
Groups with (nCC) – II
Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.
- Bumagina-Wise: \forall countable gp. C, \exists N s.t. $C \cong Out(N)$ and N is f.g.

Thm. (M.) Let C be an arbitrary countable gp. Then for every non-elem. t.-f. word hyp. gp. G there exists a t.-f. gp. N s.t.

lacksquare N is a quotient of G;

Groups with (nCC) – I
Groups with (nCC) – II
Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.
- Bumagina-Wise: \forall countable gp. C, \exists N s.t. $C \cong Out(N)$ and N is f.g.

Thm. (M.) Let C be an arbitrary countable gp. Then for every non-elem. t.-f. word hyp. gp. G there exists a t.-f. gp. N s.t.

- lacksquare N is a quotient of G;
- \blacksquare N has (2CC);

Groups with (nCC) – I
Groups with (nCC) – II
Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

For a gp. G, its outer automorphism group is defined by Out(G) = Aut(G)/Inn(G).

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.
- Bumagina-Wise: \forall countable gp. C, \exists N s.t. $C \cong Out(N)$ and N is f.g.

Thm. (M.) Let C be an arbitrary countable gp. Then for every non-elem. t.-f. word hyp. gp. G there exists a t.-f. gp. N s.t.

- lacksquare N is a quotient of G;
- \blacksquare N has (2CC);
- $lacksquare Out(N) \cong C.$

Groups with (nCC) - IGroups with (nCC) - IINatural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Known results:

- Matumoto: \forall *gp.* G, \exists N *s.t.* $G \cong Out(N)$.
- Droste-Giraudet-Göbel: \forall gp. G, \exists S s.t. $G \cong Out(S)$ and S is simple.
- Bumagina-Wise: \forall countable gp. C, \exists N s.t. $C \cong Out(N)$ and N is f.g.

Thm. (M.) Let C be an arbitrary countable gp. Then for every non-elem. t.-f. word hyp. gp. G there exists a t.-f. gp. N s.t.

- lacksquare N is a quotient of G;
- \blacksquare N has (2CC);
- $lacksquare Out(N) \cong C.$

Cor. \forall countable gp. C there is a f.g. gp. N s.t. N has (2CC) and Kazhdan's property (T), and $Out(N) \cong C$.

Open Problems

Groups with (nCC) – I
Groups with (nCC) – II
Natural Questions
Torsion-free groups with
(nCC)
Other kinds of embeddings
Outer automorphisms of
(2CC)-groups
Open Problems

Question. Can the gp. $\mathbb{Z}=\langle a\rangle$ be embedded into a (3CC)-gp. G so that $a\overset{G}{\nsim}a^{-1}$?

Open Problems

Groups with (nCC) - IGroups with (nCC) - IINatural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Question. Can the gp. $\mathbb{Z}=\langle a\rangle$ be embedded into a (3CC)-gp. G so that $a\overset{G}{\approx}a^{-1}$?

Equivalent Question (B. Neumann). Does there exist a t.-f. (3CC)-gp. *G* in which no non-trivial element is conjugated to its inverse?

Open Problems

Groups with (nCC) - IGroups with (nCC) - IINatural Questions
Torsion-free groups with (nCC)Other kinds of embeddings
Outer automorphisms of (2CC)-groups
Open Problems

Question. Can the gp. $\mathbb{Z} = \langle a \rangle$ be embedded into a (3CC)-gp. G so that $a \stackrel{G}{\approx} a^{-1}$?

Equivalent Question (B. Neumann). Does there exist a t.-f. (3CC)-gp. *G* in which no non-trivial element is conjugated to its inverse?

Question. For $n \ge 2$, does there exist an infinite finitely presented (nCC)-group ?