On Quasiconvex Subsets of Hyperbolic Groups

Ashot Minasyan

Vanderbilt University

The Cayley Graph

Suppose G is a group generated by some fixed finite symmetrized set \mathcal{A} . If $g \in G$, then $|g|_G$ — the *length* of g — is the smallest number of elements from \mathcal{A} required for obtaining g.

Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

The Cayley Graph

Suppose G is a group generated by some fixed finite symmetrized set A. If $g \in G$, then $|g|_G$ — the *length* of g — is the smallest number of elements from A required for obtaining g.

One can define the *word metric* on G corresponding to A:

$$\forall x, y \in G, \ d(x, y) \stackrel{def}{=} |x^{-1}y|_G.$$

Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

The Cayley Graph

Suppose G is a group generated by some fixed finite symmetrized set A. If $g \in G$, then $|g|_G$ — the *length* of g — is the smallest number of elements from A required for obtaining g.

One can define the *word metric* on G corresponding to A:

$$\forall x, y \in G, \ d(x, y) \stackrel{def}{=} |x^{-1}y|_G.$$

The Cayley graph $\Gamma(G, A)$ for the group G with the generating set A is constructed as follows:

 $\Gamma(G,\mathcal{A})$ is a simplicial 1-complex without loops and multiple edges, whose vertices are the elements of G; two vertices x,y are connected by an edge iff d(x,y)=1. Each edge is endowed with the metric of [0,1].

Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

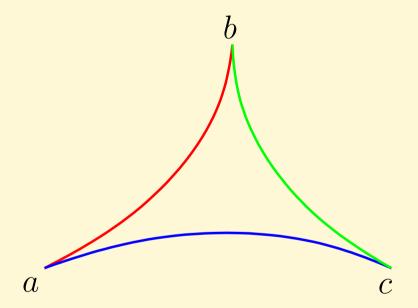
Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Slim Triangles

A geodesic triangle abc in $\Gamma(G, \mathcal{A})$ is said to be δ -slim if each of its sides belongs to a closed δ -neighborhood of the two others.



Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

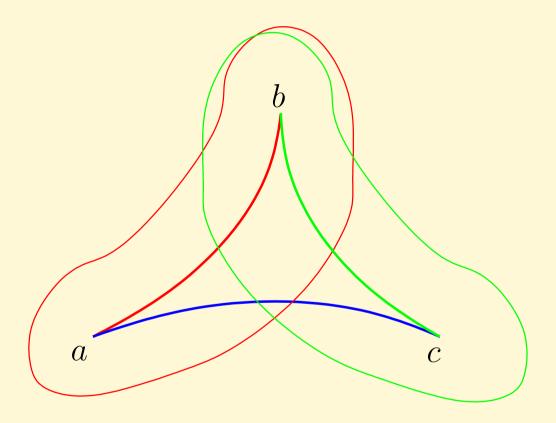
Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Slim Triangles

A geodesic triangle abc in $\Gamma(G, \mathcal{A})$ is said to be δ -slim if each of its sides belongs to a closed δ -neighborhood of the two others.



Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Hyperbolic groups were originally introduced by M. Gromov in 1987.

Def. 1. (E. Rips) The group G is said to be *hyperbolic* if there exists a number $\delta \geq 0$ such that every triangle in $\Gamma(G, \mathcal{A})$ is δ -slim.

Introduction

The Cayley Graph

Slim Triangles
Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Hyperbolic groups were originally introduced by M. Gromov in 1987.

Def. 1. (E. Rips) The group G is said to be *hyperbolic* if there exists a number $\delta \geq 0$ such that every triangle in $\Gamma(G, \mathcal{A})$ is δ -slim.

Basic examples of hyperbolic groups are

Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Hyperbolic groups were originally introduced by M. Gromov in 1987.

Def. 1. (E. Rips) The group G is said to be *hyperbolic* if there exists a number $\delta \geq 0$ such that every triangle in $\Gamma(G, \mathcal{A})$ is δ -slim.

Basic examples of hyperbolic groups are

all finite groups;

Introduction

The Cayley Graph

Slim Triangles
Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Hyperbolic groups were originally introduced by M. Gromov in 1987.

Def. 1. (E. Rips) The group G is said to be *hyperbolic* if there exists a number $\delta \geq 0$ such that every triangle in $\Gamma(G, \mathcal{A})$ is δ -slim.

Basic examples of hyperbolic groups are

- all finite groups;
- finitely generated free groups;

Introduction

The Cayley Graph

Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Hyperbolic groups were originally introduced by M. Gromov in 1987.

Def. 1. (E. Rips) The group G is said to be *hyperbolic* if there exists a number $\delta \geq 0$ such that every triangle in $\Gamma(G, \mathcal{A})$ is δ -slim.

Basic examples of hyperbolic groups are

- all finite groups;
- finitely generated free groups;
- fundamental groups of compact negatively curved Riemannian manifolds;

Introduction

The Cayley Graph
Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Hyperbolic groups were originally introduced by M. Gromov in 1987.

Def. 1. (E. Rips) The group G is said to be *hyperbolic* if there exists a number $\delta \geq 0$ such that every triangle in $\Gamma(G, \mathcal{A})$ is δ -slim.

Basic examples of hyperbolic groups are

- all finite groups;
- finitely generated free groups;
- fundamental groups of compact negatively curved Riemannian manifolds;
- f.p. groups satisfying small cancellation conditions (e.g., C'(1/6)).

Introduction

The Cayley Graph
Slim Triangles

Hyperbolic Groups

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let $\varepsilon \geq 0$ be given.

Def. 2. A subset $Q\subseteq G$ is called *quasiconvex*, if for $\forall \ x,y\in Q$ and any geodesic path p connecting them, $p\subset \mathcal{O}_{\varepsilon}(Q)$ in $\Gamma(G,\mathcal{A})$.

Introduction

Quasiconvex Subsets

Quasiconvexity: Definition and Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let $\varepsilon \geq 0$ be given.

Def. 2. A subset $Q \subseteq G$ is called *quasiconvex*, if for $\forall x, y \in Q$ and any geodesic path p connecting them, $p \subset \mathcal{O}_{\varepsilon}(Q)$ in $\Gamma(G, \mathcal{A})$.

The property of quasiconvexity in hyperbolic groups is preserved by quasiisometries, hence it doesn't depend on the choice of a finite generating set A of G.

Introduction

Quasiconvex Subsets

Quasiconvexity: Definition and Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let $\varepsilon \geq 0$ be given.

Def. 2. A subset $Q \subseteq G$ is called *quasiconvex*, if for $\forall x, y \in Q$ and any geodesic path p connecting them, $p \subset \mathcal{O}_{\varepsilon}(Q)$ in $\Gamma(G, \mathcal{A})$.

The property of quasiconvexity in hyperbolic groups is preserved by quasiisometries, hence it doesn't depend on the choice of a finite generating set A of G.

Examples of quasiconvex subsets:

any finite subset;

Introduction

Quasiconvex Subsets

Quasiconvexity: Definition and Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let $\varepsilon \geq 0$ be given.

Def. 2. A subset $Q \subseteq G$ is called *quasiconvex*, if for $\forall x, y \in Q$ and any geodesic path p connecting them, $p \subset \mathcal{O}_{\varepsilon}(Q)$ in $\Gamma(G, \mathcal{A})$.

The property of quasiconvexity in hyperbolic groups is preserved by quasiisometries, hence it doesn't depend on the choice of a finite generating set A of G.

Examples of quasiconvex subsets:

- any finite subset;
- f.g. subgroup of a f.g. free group;

Introduction

Quasiconvex Subsets

Quasiconvexity: Definition and Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let $\varepsilon \geq 0$ be given.

Def. 2. A subset $Q \subseteq G$ is called *quasiconvex*, if for $\forall x, y \in Q$ and any geodesic path p connecting them, $p \subset \mathcal{O}_{\varepsilon}(Q)$ in $\Gamma(G, \mathcal{A})$.

The property of quasiconvexity in hyperbolic groups is preserved by quasiisometries, hence it doesn't depend on the choice of a finite generating set A of G.

Examples of quasiconvex subsets:

- any finite subset;
- f.g. subgroup of a f.g. free group;
- any elementary (virtually cyclic) subgroup;

Introduction

Quasiconvex Subsets

Quasiconvexity: Definition and Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let $\varepsilon \geq 0$ be given.

Def. 2. A subset $Q \subseteq G$ is called *quasiconvex*, if for $\forall x, y \in Q$ and any geodesic path p connecting them, $p \subset \mathcal{O}_{\varepsilon}(Q)$ in $\Gamma(G, \mathcal{A})$.

The property of quasiconvexity in hyperbolic groups is preserved by quasiisometries, hence it doesn't depend on the choice of a finite generating set A of G.

Examples of quasiconvex subsets:

- any finite subset;
- f.g. subgroup of a f.g. free group;
- any elementary (virtually cyclic) subgroup;
- any f.g. undistorted (i.e., quasiisometrically embedded) subgroup.

Introduction

Quasiconvex Subsets

Quasiconvexity: Definition and Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let G be a hyperbolic group.

Introduction

Quasiconvex Subsets
Quasiconvexity: Definition and
Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let *G* be a hyperbolic group.

1. If $A \subseteq G$ is q.c. and $g \in G$ then the translations gA and Ag are also q.c.;

Introduction

Quasiconvex Subsets
Quasiconvexity: Definition and
Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let *G* be a hyperbolic group.

- 1. If $A \subseteq G$ is q.c. and $g \in G$ then the translations gA and Ag are also q.c.;
- 2. $A, B \subseteq$ are q.c. then their union $A \cup B$ and product $AB = \{ab \mid a \in A, b \in B\}$ are q.c.;

Introduction

Quasiconvex Subsets
Quasiconvexity: Definition and
Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let *G* be a hyperbolic group.

- 1. If $A \subseteq G$ is q.c. and $g \in G$ then the translations gA and Ag are also q.c.;
- 2. $A, B \subseteq$ are q.c. then their union $A \cup B$ and product $AB = \{ab \mid a \in A, b \in B\}$ are q.c.;
- 3. Any q.c. subgroup $H \leq G$ is hyperbolic itself, hence it is f.g. and f.p.;

Introduction

Quasiconvex Subsets
Quasiconvexity: Definition and
Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let G be a hyperbolic group.

- 1. If $A \subseteq G$ is q.c. and $g \in G$ then the translations gA and Ag are also q.c.;
- 2. $A, B \subseteq$ are q.c. then their union $A \cup B$ and product $AB = \{ab \mid a \in A, b \in B\}$ are q.c.;
- 3. Any q.c. subgroup $H \leq G$ is hyperbolic itself, hence it is f.g. and f.p.;
- 4. If $H \leq G$ is infinite and q.c. then $|N_G(H):H| < \infty$;

Introduction

Quasiconvex Subsets
Quasiconvexity: Definition and
Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Let *G* be a hyperbolic group.

- 1. If $A \subseteq G$ is q.c. and $g \in G$ then the translations gA and Ag are also q.c.;
- 2. $A, B \subseteq$ are q.c. then their union $A \cup B$ and product $AB = \{ab \mid a \in A, b \in B\}$ are q.c.;
- 3. Any q.c. subgroup $H \leq G$ is hyperbolic itself, hence it is f.g. and f.p.;
- 4. If $H \leq G$ is infinite and q.c. then $|N_G(H):H| < \infty$;
- 5. If $H \leq G$ is infinite and q.c. then $|VN_G(H):H| < \infty$,

where
$$VN_G(H) = \{g \in G \mid |H : (H \cap gHg^{-1})| < \infty,$$
 $|gHg^{-1} : (H \cap gHg^{-1})| < \infty\} -$

the virtual normalizer (commensurator) of H in G.

Introduction

Quasiconvex Subsets
Quasiconvexity: Definition and
Examples

Some Properties

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 3. For two subsets A,B of a group G we will write

 $A \leq B$ if $A \subseteq Bg_1 \cup \cdots \cup Bg_n$ for some $g_1, \ldots, g_n \in G$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 3. For two subsets A,B of a group G we will write

 $A \leq B$ if $A \subseteq Bg_1 \cup \cdots \cup Bg_n$ for some $g_1, \ldots, g_n \in G$.

Def. 4. Define an equivalence relation on 2^G as follows:

if $A, B \subset G$ then $A \approx B$ iff $A \leq B$ and $B \leq A$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 3. For two subsets A,B of a group G we will write

 $A \leq B$ if $A \subseteq Bg_1 \cup \cdots \cup Bg_n$ for some $g_1, \ldots, g_n \in G$.

- **Def. 4.** Define an equivalence relation on 2^G as follows: if $A, B \subset G$ then $A \approx B$ iff $A \preceq B$ and $B \preceq A$.
- **Def. 5.** Let $A \subseteq G$, then the commensurator subgroup of A in G is

$$Comm_G(A) \stackrel{def}{=} \{g \in G \mid gA \approx A\} = St_G([A]).$$

Introduction

Quasiconvex Subsets

Subset Commensurators

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 3. For two subsets A,B of a group G we will write

 $A \leq B$ if $A \subseteq Bg_1 \cup \cdots \cup Bg_n$ for some $g_1, \ldots, g_n \in G$.

Def. 4. Define an equivalence relation on 2^G as follows: if $A, B \subset G$ then $A \approx B$ iff $A \preceq B$ and $B \preceq A$.

Def. 5. Let $A \subseteq G$, then the commensurator subgroup of A in G is

$$Comm_G(A) \stackrel{def}{=} \{g \in G \mid gA \approx A\} = St_G([A]).$$

Remark 1. If A is a subgroup of G then $Comm_G(A) = VN_G(A)$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 3. For two subsets A,B of a group G we will write

 $A \leq B$ if $A \subseteq Bg_1 \cup \cdots \cup Bg_n$ for some $g_1, \ldots, g_n \in G$.

Def. 4. Define an equivalence relation on 2^G as follows: if $A, B \subset G$ then $A \approx B$ iff $A \preceq B$ and $B \preceq A$.

Def. 5. Let $A \subseteq G$, then the commensurator subgroup of A in G is

$$Comm_G(A) \stackrel{def}{=} \{g \in G \mid gA \approx A\} = St_G([A]).$$

Remark 1. If A is a subgroup of G then $Comm_G(A) = VN_G(A)$.

Theorem 1. Let A be a q.c. subset of a hyp. group G that has at least two limit points on ∂G (i.e., A is sufficiently large). Then $Comm_G(A) \leq A$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 3. For two subsets A,B of a group G we will write

$$A \leq B$$
 if $A \subseteq Bg_1 \cup \cdots \cup Bg_n$ for some $g_1, \ldots, g_n \in G$.

- **Def. 4.** Define an equivalence relation on 2^G as follows: if $A, B \subset G$ then $A \approx B$ iff $A \preceq B$ and $B \preceq A$.
- **Def. 5.** Let $A \subseteq G$, then the commensurator subgroup of A in G is

$$Comm_G(A) \stackrel{def}{=} \{g \in G \mid gA \approx A\} = St_G([A]).$$

Remark 1. If A is a subgroup of G then $Comm_G(A) = VN_G(A)$.

Theorem 1. Let A be a q.c. subset of a hyp. group G that has at least two limit points on ∂G (i.e., A is sufficiently large). Then $Comm_G(A) \leq A$.

Idea of the proof. Use properties of G-action on the boundary ∂G .

Introduction

Quasiconvex Subsets

Subset Commensurators

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Def. 6. A q.c. subset Q of a hyp. group G is small relatively to $H \leq G$ if there exist <u>no</u> finite $P_1, P_2 \subset G$ such that $H \subseteq P_1Q^{-1}QP_2$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Relatively Small Subsets

Residualizing Homomorphisms

Def. 6. A q.c. subset Q of a hyp. group G is small relatively to $H \leq G$ if there exist <u>no</u> finite $P_1, P_2 \subset G$ such that $H \subseteq P_1Q^{-1}QP_2$.

Remark 2. If $K \leq_{q.c.} G$ and $|G:K| = \infty$ then K is small rel. to G.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Relatively Small Subsets

Residualizing Homomorphisms

Def. 6. A q.c. subset Q of a hyp. group G is small relatively to $H \leq G$ if there exist <u>no</u> finite $P_1, P_2 \subset G$ such that $H \subseteq P_1Q^{-1}QP_2$.

Remark 2. If $K \leq_{q.c.} G$ and $|G:K| = \infty$ then K is small rel. to G.

Theorem 2. Suppose $H \leq_{n.e.} G$ and $Q, S \subset_{q.c.} G$ are small rel. to H. Then $T_1 = Q \cup S$ and $T_2 = Q \cdot S$ are q.c. and small rel. to H.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Relatively Small Subsets

Residualizing Homomorphisms

Def. 6. A q.c. subset Q of a hyp. group G is small relatively to $H \leq G$ if there exist <u>no</u> finite $P_1, P_2 \subset G$ such that $H \subseteq P_1Q^{-1}QP_2$.

Remark 2. If $K \leq_{q.c.} G$ and $|G:K| = \infty$ then K is small rel. to G.

Theorem 2. Suppose $H \leq_{n.e.} G$ and $Q, S \subset_{q.c.} G$ are small rel. to H. Then $T_1 = Q \cup S$ and $T_2 = Q \cdot S$ are q.c. and small rel. to H.

The statement below generalizes the fact that a non-elementary hyp. group can not be bounded generated:

Corollary 1. Let H_1, \ldots, H_s be q.c. subgroups of infinite index in a hyp. group G. Then $H_1H_2\cdots H_s \subsetneq G$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Relatively Small Subsets

Residualizing Homomorphisms

Def. 6. A q.c. subset Q of a hyp. group G is small relatively to $H \leq G$ if there exist <u>no</u> finite $P_1, P_2 \subset G$ such that $H \subseteq P_1Q^{-1}QP_2$.

Remark 2. If $K \leq_{q.c.} G$ and $|G:K| = \infty$ then K is small rel. to G.

Theorem 2. Suppose $H \leq_{n.e.} G$ and $Q, S \subset_{q.c.} G$ are small rel. to H. Then $T_1 = Q \cup S$ and $T_2 = Q \cdot S$ are q.c. and small rel. to H.

The statement below generalizes the fact that a non-elementary hyp. group can not be bounded generated:

Corollary 1. Let H_1, \ldots, H_s be q.c. subgroups of infinite index in a hyp. group G. Then $H_1H_2\cdots H_s \subsetneq G$.

Theorem 3. $H \leq_{n.e.} G$, $Q \subseteq_{q.c.} G$. Assume Q^{-1} is also q.c. TFAE:

- **1.** Q is small rel. to H;
- **2.** \forall finite $P_1, P_2 \subset G$, $H \nsubseteq P_1QP_2$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Suppose the group G is hyperbolic.

Def. 7. $H \leq_{n.e.} G$ is called a G-subgroup if for any finite $M \subset G$ $\exists \ \phi: G \to G_1$, s.t. G_1 is non-elementary hyperbolic, $\phi(H) = G_1$ and $\phi|_M$ is injective.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

G-subgroups

Suppose the group G is hyperbolic.

Def. 7. $H \leq_{n.e.} G$ is called a G-subgroup if for any finite $M \subset G$ $\exists \ \phi: G \to G_1$, s.t. G_1 is non-elementary hyperbolic, $\phi(H) = G_1$ and $\phi|_M$ is injective.

Example. [Ol'shanskii, 1993] Let

$$G = (F(x,y) \times \langle a \rangle_2) * \langle b \rangle, \ H = F(x,y), \ M = \{1, [a,b]\}.$$

Then $\forall \phi: G \to G_1$ with $\phi(H) = G_1$ one has $M \subset ker(\phi)$. Thus H is not a G-subgroup of G. Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

G-subgroups

Suppose the group G is hyperbolic.

Def. 7. $H \leq_{n.e.} G$ is called a G-subgroup if for any finite $M \subset G$ $\exists \ \phi: G \to G_1$, s.t. G_1 is non-elementary hyperbolic, $\phi(H) = G_1$ and $\phi|_M$ is injective.

Example. [Ol'shanskii, 1993] Let

$$G = (F(x,y) \times \langle a \rangle_2) * \langle b \rangle, \ H = F(x,y), \ M = \{1, [a,b]\}.$$

Then $\forall \ \phi: G \to G_1$ with $\phi(H) = G_1$ one has $M \subset ker(\phi)$. Thus H is not a G-subgroup of G.

A. Ol'shanskii (1993) found conditions that are both necessary and sufficient for a non-elementary subgroup H to be a G-subgroup.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

1. G_1 is a non-elementary hyperbolic group;

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

- 1. G_1 is a non-elementary hyperbolic group;
- 2. $\phi|_Q$ is an isometry and \forall q.c. $S \subseteq Q$, $\phi(S)$ is q.c. in G_1 . In particular, ϕ is injective on Q;

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi:G \to G_1$ such that

- 1. G_1 is a non-elementary hyperbolic group;
- 2. $\phi|_Q$ is an isometry and \forall q.c. $S \subseteq Q$, $\phi(S)$ is q.c. in G_1 . In particular, ϕ is injective on Q;
- 3. $\phi(H_i) = G_1 \ \forall i = 1, 2, \dots, k;$

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving
Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

- 1. G_1 is a non-elementary hyperbolic group;
- 2. $\phi|_Q$ is an isometry and \forall q.c. $S \subseteq Q$, $\phi(S)$ is q.c. in G_1 . In particular, ϕ is injective on Q;
- 3. $\phi(H_i) = G_1 \ \forall i = 1, 2, \dots, k;$
- 4. If $u, v \in Q$ then $\phi(u) \stackrel{G_1}{\sim} \phi(v)$ iff $u \stackrel{G}{\sim} v$;

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

- 1. G_1 is a non-elementary hyperbolic group;
- 2. $\phi|_Q$ is an isometry and \forall q.c. $S \subseteq Q$, $\phi(S)$ is q.c. in G_1 . In particular, ϕ is injective on Q;
- 3. $\phi(H_i) = G_1 \ \forall i = 1, 2, \dots, k;$
- 4. If $u, v \in Q$ then $\phi(u) \stackrel{G_1}{\sim} \phi(v)$ iff $u \stackrel{G}{\sim} v$;
- 5. $\forall a \in Q, \ C_{G_1}(\phi(a)) = \phi(C_G(a));$

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving
Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

- 1. G_1 is a non-elementary hyperbolic group;
- 2. $\phi|_Q$ is an isometry and \forall q.c. $S \subseteq Q$, $\phi(S)$ is q.c. in G_1 . In particular, ϕ is injective on Q;
- 3. $\phi(H_i) = G_1 \ \forall i = 1, 2, \dots, k;$
- 4. If $u, v \in Q$ then $\phi(u) \stackrel{G_1}{\sim} \phi(v)$ iff $u \stackrel{G}{\sim} v$;
- **5.** $\forall a \in Q, \ C_{G_1}(\phi(a)) = \phi(C_G(a));$
- 6. $\{x^G \mid o(x) < \infty\} \stackrel{\phi}{\longleftrightarrow} \{y^{G_1} \mid o(y) < \infty\}.$

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving
Quasiconvexity

Necessity of Assumptions

Theorem 4. Let H_1, \ldots, H_k be G-subgroups of a hyp. group G. Assume $Q \subseteq_{q.c.} G$ is small rel. to $H_i \ \forall \ i=1,2,\ldots,k$. Then $\exists \ G_1$ and an epimorphism $\phi: G \to G_1$ such that

- 1. G_1 is a non-elementary hyperbolic group;
- 2. $\phi|_Q$ is an isometry and \forall q.c. $S \subseteq Q$, $\phi(S)$ is q.c. in G_1 . In particular, ϕ is injective on Q;
- 3. $\phi(H_i) = G_1 \ \forall i = 1, 2, \dots, k;$
- 4. If $u, v \in Q$ then $\phi(u) \stackrel{G_1}{\sim} \phi(v)$ iff $u \stackrel{G}{\sim} v$;
- **5.** $\forall a \in Q, \ C_{G_1}(\phi(a)) = \phi(C_G(a));$
- 6. $\{x^G \mid o(x) < \infty\} \stackrel{\phi}{\longleftrightarrow} \{y^{G_1} \mid o(y) < \infty\}.$

Idea of the proof. Apply small cancellation theory for hyp. groups developed by Ol'shanskii; use properties of hyp. boundary and rel. small subsets.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups

Homomorphisms Preserving Quasiconvexity

Necessity of Assumptions

Necessity of Assumptions

Def. 8. $H \leq G$ is a *quasiretract* of G if $\exists N \triangleleft G$ such that

$$|G:HN|<\infty$$
 and $|H\cap N|<\infty$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups Homomorphisms Preserving

Quasiconvexity

Necessity of Assumptions

Necessity of Assumptions

Def. 8. $H \leq G$ is a *quasiretract* of G if $\exists N \triangleleft G$ such that

$$|G:HN|<\infty$$
 and $|H\cap N|<\infty$.

Remark 3. In a hyp. group every quasiretract is quasiconvex.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

 $G\operatorname{\!-subgroups}$

Homomorphisms Preserving

Quasiconvexity

Necessity of Assumptions

Necessity of Assumptions

Def. 8. $H \leq G$ is a *quasiretract* of G if $\exists N \triangleleft G$ such that

$$|G:HN|<\infty$$
 and $|H\cap N|<\infty$.

Remark 3. In a hyp. group every quasiretract is quasiconvex.

Theorem 5. Let G be f.g., $H \leq G$ and $Q \subset G$. Suppose Q is <u>not</u> small rel. to H and $\exists \ \phi: G \to G_1$ s.t. $\phi(H) = G_1$ and $\phi|_Q: Q \to \phi(Q)$ is a quasiisometry. Then H is a quasiretract of G. Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

G-subgroups
Homomorphisms Preserving
Quasiconvexity

Necessity of Assumptions

Theorem 6. [Ol'shanskii, 1995, SQ-universality within the class of all hyperbolic groups]

Let G and H be hyp. groups and G be non-elementary. There exists a non-elementary hyp. quotient G_1 of G containing a copy of H.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Corollaries

Theorem 6. [Ol'shanskii, 1995, SQ-universality within the class of all hyperbolic groups]

Let G and H be hyp. groups and G be non-elementary. There exists a non-elementary hyp. quotient G_1 of G containing a copy of H.

Theorem 7. If G, H are hyperbolic groups and G is non-elementary, then H can be isomorphically embedded into some simple quotient M of the group G.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Corollaries

Theorem 6. [Ol'shanskii, 1995, SQ-universality within the class of all hyperbolic groups]

Let G and H be hyp. groups and G be non-elementary. There exists a non-elementary hyp. quotient G_1 of G containing a copy of H.

Theorem 7. If G, H are hyperbolic groups and G is non-elementary, then H can be isomorphically embedded into some simple quotient M of the group G.

Theorem 8. \exists a simple gp. M that is a quotient of every non-elementary hyperbolic group and contains every hyperbolic group.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Corollaries

Theorem 6. [Ol'shanskii, 1995, SQ-universality within the class of all hyperbolic groups]

Let G and H be hyp. groups and G be non-elementary. There exists a non-elementary hyp. quotient G_1 of G containing a copy of H.

Theorem 7. If G, H are hyperbolic groups and G is non-elementary, then H can be isomorphically embedded into some simple quotient M of the group G.

Theorem 8. \exists a simple gp. M that is a quotient of every non-elementary hyperbolic group and contains every hyperbolic group.

Theorem 9. (Thrifty Embedding) Suppose G, H are torsion-free hyperbolic groups, G is non-elementary and $H \neq \{1\}$. Then \exists a simple torsion-free quotient M of G and $\pi: H \hookrightarrow M$, s.t. $\pi(H)$ is proper and malnormal in M, and any proper subgroup of M is conjugate (in M) to a subgroup of $\pi(H)$.

Introduction

Quasiconvex Subsets

Subset Commensurators

Relatively Small Subsets

Residualizing Homomorphisms

Corollaries